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Abstract  

Higher temperatures have been established to have an adverse effect on human 

health and wellbeing. A warming climate and increasing frequency and severity 

of extreme events are expected to exacerbate heat-related risks, particularly in 

cities where the influence of the heat island adds to their complexity. Urban heat 

impacts are as a result regarded as requiring multidisciplinary attention to gen-

erate integrated approaches for safeguarding public health and wellbeing. This 

paper is concerned with identifying how excess heat affects building occupants, 

which groups may be most vulnerable, and how fundamentally and in what ways 

should concerns about the potential effects of summer overheating and their mit-

igation influence built environment design. The method for addressing these ques-

tions considered literature from public health, epidemiology, and climate change 

science. The findings highlighted significant shortfalls in guidance concerned with 

overheating risk in buildings, while received attention thus far prioritises the ty-

pologies of housing, hospitals, and care infrastructure.  
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Key definitions  

Comfort: Described as a state of physical ease and freedom from pain or constraint (Stevenson, 2010). 

Health: The World Health Organisation (WHO) describes it as ‘a state of complete physical, mental, and 

social wellbeing and not merely the absence of disease or infirmity’ (Park & Allaby, 2013). 

Heatwave: There is no official definition for the United Kingdom. The World Meteorological Organization 

(WMO) defines it as a condition: ‘when the daily maximum temperature of more than five consecutive days 

exceeds the average maximum temperature by 5°C, the normal period being 1961-1990’ (www.metoffice.gov.uk). 

RCP 8.5: Representative Concentration Pathway 8.5 assumes high population, relatively slow income growth 

with modest rates of technological change and energy efficiency, leading in the long-term to high energy demand 

and greenhouse gas emissions in the absence of climate change mitigation policies. Compared to other Repre-

sentative Concentration Pathways, this pathway would lead to the highest greenhouse gas emissions and re-

sultant climate impact (Riahi, et al., 2011). 

Wellbeing: The Oxford dictionary defines it as a state of mental and physical health, as well as social wellness, 

satisfaction with their lives, and experiencing a good quality of life (Castree, et al., 2013). 
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Fig. 1. Global temperature anomalies for 2014 (Jan-to-Oct) from the Met Office, UK.

Introduction 

The Fifth Assessment Report by the IPCC 

(IPCC, 2013) stresses that an average tempera-

ture increase >2 K above preindustrial levels 

can be expected by around the middle of this 

century if global greenhouse gas emissions con-

tinue to increase at their present rate (scenario 

RCP 8.5). In the United Kingdom, early impacts 

of climate change are likely to be experienced as 

increases in the frequency and severity of ex-

treme weather events such as heatwaves, flood-

ing, storms, and drought. As 2014 is on course 

to be one of, if not the warmest year on record 

for the United Kingdom and globally (see Fig. 

1), heat-related impacts have recently gained 

significant attention (Slingo, et al., 2014). Epi-

demiological studies focusing on extreme events 

such as the 2003 pan-European heatwave have 

established higher temperatures to have an ad-

verse effect on human morbidity and mortality 

(Gosling, et al., 2009). Further studies have 

demonstrated exposure to excess heat as already 

a considerable health concern, with predicted 

climate change likely to contribute to higher 

rates of mortality (Hajat, et al., 2013). Excess 

heat is therefore a significant health risk that 

requires strategic planning to mitigate impacts. 

In recognition of this need and in response to 

recent heat events (see Table 1), the Heatwave 

Plan was introduced by the United Kingdom 

government to guide the National Health Ser-

vice and social services (PHE, 2014a). 

The Heatwave Plan  

The annually revised Heatwave Plan was first 

published in response to the adverse effects of 

the 2003 pan-European heatwave (PHE, 2014a). 

For warning thresholds, the Plan refers to tem-

perature definitions provided by the Met Office. 

These differ regionally with the average at 30°C 

throughout the day and 15°C overnight. Alt-

hough excess deaths are apparent at lower tem-

peratures, the warning system is based on trig-

gers of 15-20% increased risk, with different 

triggers (Table 2) addressing regional relative 

adaptations to excess heat (PHE, 2014a). 
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Table 1. Historical extreme heat events (UK).  

Events Excess deaths 

1976 June-July: England and Wales (9.7%)  

1976 June-July: Greater London (15.4%) 

1995 July: England and Wales 768 (11.2%) 

1995 July: Greater London 184 (23.0%) 

2003 August: England and Wales 2,091 (17.0%) 

2003 August: London 616 (42.0%) 

2006 England and Wales 680* 

2009 England and Wales 300* 

2013 July: England 650† 

Sources: Kovats & Hajat (2008); *PHE (2014a); †Armstrong (2013). 

The Plan’s responses to heat stress focus on 

emergency planning (ASC, 2011). The measures 

suggested aim to alert, prepare, and prevent 

heat-related adverse health effects. There is no 

explicit strategy discussed to reduce social vul-

nerability through cross-agency approaches 

(Benzie, et al., 2011). Local interests have been 

delegated this task, with the Plan presented only 

as a strategic document that requires Local Au-

thorities and their health partners to adapt to 

local circumstances (PHE, 2014a). Although the 

Plan gives attention to training local staff and 

institutional management practices, existing in-

adequacies in building stock and equipment hin-

dering staff action, have questioned the effec-

tiveness of this attention (Boyson, et al., 2014). 

Table 2. Regional threshold temperatures.  

National severe weather 

warning service region 

Day 

°C 

Night 

°C 

London 32 18 

Southeast 31 16 

Southwest 30 15 

Eastern 30 15 

West Midlands 30 15 

East Midlands 30 15 

Northwest 30 15 

Yorkshire and Humber 29 15 

Northeast 28 15 

Source: Public Health England (2014a). 

Heat risk to health  

The first step of a heat vulnerability assessment 

is to determine how it affects the population. In 

the very least, excess heat can cause mild dis-

comfort, while at its extreme lead to fatality. 

Around 2,000 premature deaths are estimated to 

occur per year in the United Kingdom due to 

heat-related health risks, with the figure pro-

jected to increase by 257% by the 2050s if adap-

tation measures are not considered (Fig. 2). Alt-

hough most assume such deaths to happen 

during extreme events, a significant proportion 

has been found to occur outside defined heat-

waves (Hajat, et al., 2013). The Heatwave Plan 

acknowledges this, and emphasises the signifi-

cance of long-term planning in addressing such 

excess deaths (PHE, 2014a).  

 

Note: based on an ensemble of nine climate model simulations. Data 

source: Hajat, et al. (2013). 

Fig. 2. Estimated heat-related deaths in the UK.  

Populations have the ability to adapt to varied 

climates, which is demonstrated by the variation 

in heat risk between regions and countries. Peo-

ple acclimatise to their local climates physiolog-

ically, behaviourally, and in generational and 

cultural terms (Hajat, et al., 2013). Although 

such adaptation is anticipated, the rate at which 

climate change is expected to increase both the 
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magnitude and variability of future tempera-

tures will be unparalleled since agricultural 

times. It is therefore unlikely that population 

adaptation to future warmer climates will be 

comparable to the past (Hajat, et al., 2013).  

Human beings constantly generate heat from 

metabolic functions. Higher levels of activity 

produce greater levels of heat (100 W at seden-

tary to around 1,000 W when strenuously ac-

tive), which must be dissipated to the surround-

ings in order to maintain the body’s average core 

temperature of 37°C (ASHRAE, 2013). Healthy 

adults can efficiently regulate increases in tem-

perature by increasing radiant, convective, and 

evaporative heat loss by vasodilatation and per-

spiration. When the air temperature becomes 

warmer than the skin at 34°C, perspiration be-

comes the single means of thermoregulation 

(Gartland, 2008). Humidity is therefore an 

added exposure factor in thermoregulation, as 

elevated levels make it difficult to achieve evap-

orative heat loss through perspiration.  

For all peoples, insufficient heat loss leads to 

overheating (hyperthermia), which results in 

cardiac stress and potential dehydration from 

sweating. The additional strain on the cardio-

vascular system typically results in cardiac com-

plications or Stroke, although both respiratory 

and renal causes have also been attributed 

(Hajat, et al., 2007). Exposure to significant 

heat stress could cause heat cramps, heat ex-

haustion, heat syncope, or heatstroke. Severe 

heatstroke occurs when the body’s core temper-

ature exceeds 39.4°C resulting in multiple organ 

dysfunction, which left untreated would rapidly 

progress to fatality. Even if death is avoided, ex-

treme heat stress may leave permanent damage 

to organ systems with significant impact to an 

individual’s longevity. Heat stress therefore 

should not be considered lightly, and certainly 

not as a threat that only concerns the frail.  

Vulnerabilities 

The Committee on Climate Change (CCC) as-

serts that the built environment has a responsi-

bility to safeguard the health and wellbeing of 

communities (ASC, 2014). The communities 

that the built environment is designed and real-

ised for, represents a variety of different groups 

with varying degrees of strengths and weak-

nesses. The following expands upon the dis-

cussed physiological base of how heat affects the 

population, to include wider socioeconomic and 

spatial factors that lead to the increased vulner-

ability of certain community groups. 

 

Deaths per year, per 100,000 population, by age group.  

Data source: Hajat, et al. (2013). 

Fig. 3. Mean estimates of UK deaths by age group.  

Age, ageing, and gender 

Age has significant association to heat-related 

morbidity and mortality, with both the very 

young and older people at heightened risk. Chil-

dren, particularly infants are at risk due to their 

limited ability to thermoregulate and higher po-

tential for dehydration (Hajat, et al., 2007). 

Older people are at risk due to ageing or senes-

cence resulting in reduced thermoregulatory ca-

pacity (Grundy, 2006), which begins to occur 
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from around fifty years of age. Studies of recent 

heat events have demonstrated older people to 

account for higher mortality figures than chil-

dren (Kovats & Hajat, 2008). The 2003 pan-Eu-

ropean heatwave for example, presented excess 

mortality greatest in those aged 75 and over 

(Johnson, et al., 2005). This increased represen-

tation has been documented by further studies 

in the United Kingdom and elsewhere, and is at-

tributed to the ageing structure of such societies 

(Hajat, et al., 2007). In the United Kingdom for 

example, the last two decades has seen the pop-

ulation aged 75 and over (those with the highest 

vulnerability to heat-related health risks), in-

crease by 24% (ASC, 2014).  

The risk to older people is exacerbated by their 

typical living arrangements. Of those aged over 

75, a significant proportion tend to live in cities 

(~9.5% of the urban population), where heat 

risks are generally higher due to the urban heat 

island effect. In addition, nearly a quarter mil-

lion (those over 70) inhabit urban or suburban 

flats, approximately half of which are compact 

arrangements with two rooms or less (ASC, 

2014). The risk to such occupants is therefore 

compounded by their age, and the location and 

character of the buildings they inhabit. 

Gender vulnerability is inconclusive, with both 

men and women identified to demonstrate 

greater risk in studies undertaken in different 

contexts (Brown & Walker, 2008). Studies from 

Europe for example have shown women to be 

more at risk in comparison to men (Kovats & 

Hajat, 2008); particularly those aged 65 and over 

(explained by their physiology). Beyond physio-

logical reasons, other studies have described so-

cial factors as also having a degree of correlation 

(Hajat, et al., 2007). Men for example have been 

identified to have greater risk of heatstroke, due 

to their higher probability of being active in 

warmer conditions (Kovats & Hajat, 2008).   

Specific health conditions 

Illness and medical conditions account for 

greater risks across all groups. Certain condi-

tions that compromise thermoregulation, medi-

cations, and alcohol or other substance abuse are 

significant risk factors. Studies have particularly 

identified people with cardiovascular conditions, 

cerebrovascular conditions, and diabetes to have 

higher vulnerability. For such individuals’ 

higher temperatures can represent added heat 

stress due to their already compromised state of 

health (Kovats & Hajat, 2008). 

In addition, studies from France and the United 

States have demonstrated serious physical and 

psychological disabilities to exacerbate risk 

(Benzie, et al., 2011). Depression and impaired 

cognitive states such as dementia or Parkinson’s 

disease, may leave individuals incapable of tak-

ing adaptive measures due to their compromised 

faculties of judgment (Kovats, et al., 2006). Per-

ception of vulnerability is also a significant fac-

tor, as studies of older people in London and 

Norwich concerning heatwave risk found that 

many did not perceive themselves to be ‘at risk’, 

notwithstanding their age or diagnosed chronic 

ailments (Abrahamson, et al., 2008).  

Socioeconomic factors 

The Heatwave Plan is based on physiological 

health-centric evidence that considers the above 

discussed intrinsic factors to affect heat vulner-

ability. Although socioeconomic factors have 

been traditionally discussed for cold-related 

risks, studies have demonstrated such factors to 

be also relevant for heat vulnerability (Brown & 

Walker, 2008). Economic affluence for example 

has been found to be significant in studies from 

the United States. This association is related to 
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the increased use of air-conditioning as a miti-

gation strategy, and the inability of some to af-

ford its use. A study of the 1995 Chicago heat-

wave for example, highlighted poverty as an 

explanation for heatstroke in older people in in-

ner city areas, where both elevated energy costs 

and loss of income-support combined to exacer-

bate mortality risk (Klinenberg, 2002).  

From a biophysical perspective, ethnicity pre-

sents no direct association to heat risks (Hajat, 

et al., 2007). Epidemiological evidence however 

presents South Asians to have higher prevalence 

of diabetes and cardiac conditions, which are in-

direct risk factors (Benzie, et al., 2011). Ethnic-

ity may also present associations from a socioec-

onomic perspective. A study from the United 

States for example had found air-conditioning 

prevalence amongst poor black households to be 

<50% of white households, with the disparity 

attributed to reduced access to education and 

resources (O’Neill, et al., 2005).  

Living arrangements have an increasing influ-

ence, particularly in relation to vulnerable 

groups. With older people, changes in household 

and living patterns may increase risk due to iso-

lation. A study of Chicago’s heatwave of 1995 

for example, had identified an association be-

tween recorded heat-related mortality and isola-

tion (Klinenberg, 2002). As populations con-

tinue to age, living independently is likely to 

become more common in the future (UN, 2013). 

Heat-related risks to such isolated individuals 

will as a result be significantly higher. Consider-

ing this social dimension to the issue, the Joseph 

Rowntree Foundation has argued for heat-re-

lated risks to be assessed beyond biophysical 

processes and include contextual sociocultural 

factors (Lindley, et al., 2011). They advocate the 

fostering of stronger social networks (Benzie, et 

al., 2011), and strategic engagement with social 

capital (Pelling & High, 2005). An example of 

such action is represented by Philadelphia’s 

community-based ‘buddy system’, whereby vul-

nerable individuals are regularly monitored by 

neighbours (Kovats & Hajat, 2008). The spatial 

patterns of how poor health, homelessness, low 

income, or social housing is distributed are also 

likely to have some influence on the heat 

vulnerability of a community. The Joseph 

Rowntree Foundation has therefore argued for 

the need to include a degree of socioeconomic 

mapping in any approach that is aimed at ad-

dressing heat vulnerability (Benzie, et al., 2011).  

 
Fig. 4. UK mean temperatures for summer 2003.    

Regional variations 

Analysis of the 2003 heatwave has presented a 

model for how regional variations affect heat 

vulnerability (Fig. 4). The highest temperatures 

during this event were observed in the southeast 

region, with emphasis in greater London. The 

latter had experienced a marked increase of 16% 
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in emergency hospital admissions, while excess 

mortality had increased by as much as 42%. The 

data presented the greatest excess mortality to 

have occurred where the highest temperatures 

had the greatest incidence (Johnson, et al., 

2005). Longitudinal studies have supported 

southern England’s vulnerability to heat events, 

with the urban area of London to demonstrate 

the greatest (Fig. 5) (Hajat, et al., 2007). Such 

longstanding regional variations have as a result 

led to degrees of acclimatisation amongst their 

populations, which in turn manifests as different 

responses to excess heat. Northern parts of Eng-

land therefore present lower thresholds for ex-

cess mortality than further south, with a study 

identifying the threshold for the northeast at 

16.6°C, while for London it was 19.6°C (Hajat, 

et al., 2013). Excess mortality with increasing 

temperature is also observed at higher thresh-

olds in warmer climates than in milder climates 

(Kovats & Hajat, 2008). Such regional differ-

ences challenge the validity of a generalised na-

tional threshold. The Heatwave Plan (PHE, 

2014a) as a result accounts for this by presenting 

region-specific thresholds (Table 2).  

Urban and rural disparity 

Numerous studies have demonstrated heat-re-

lated mortality to present greater sensitivity in 

cities than in rural areas (Kovats & Hajat, 

2008). This increased sensitivity is largely at-

tributed to the urban heat island (Hajat, et al., 

2007), the significance of which has been identi-

fied for specific events (Watkins, et al., 2002). 

The phenomenon combined with climate change 

and its likely threat of frequent and severe heat-

waves, poses significant risk to wellbeing in ur-

ban centres. It is predicted that by the 2050s, 

rising mean temperatures will triple the heat-re-

lated mortality average (ASC, 2014), a large 

proportion of which is likely to be in cities.  

 

Fig. 5. UK mean temp. summer averages 1971-2000. 

Heat islands are dynamic systems, thus are dif-

ficult to quantify both spatially and temporally 

in relation to specific heat events (Kovats & 

Hajat, 2008). Their relevance also differs, as 

demonstrated by cities in southern Europe being 

more adapted to their influence than those in 

the north. A study from Spain for example found 

excess mortality during the 2003 heatwave to be 

no different in rural villages relative to the pro-

vincial capital (Kovats & Hajat, 2008). 

Built environment concerns  

It is impractical for all buildings to comprehen-

sively address the occupant vulnerabilities dis-

cussed. Most building commissions anticipate 

the engagement of defined groups of occupants 

associated to the function or typology of the 

building, while allowing for a reasonable degree 
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of adaptation for future changes in use. Occu-

pancy-based risks are thus managed by applying 

building typology-based mitigations. These pri-

oritise measures for anticipated high-exposure 

occupants, followed by those for the general pop-

ulation in compliance with regulations.  

Studies of recent heat events have identified in-

adequacies in typology-based provisions, with 

critical typologies stressed as requiring urgent 

attention and adaptations to tackle future 

threats. Heatwave mortality data for southern 

England (from 2003) for example, had high-

lighted the greatest number of excess deaths to 

have occurred in hospitals (56%), followed by 

care homes (24%), and the least in private dwell-

ings (Kovats, et al., 2006). The CCC has warned 

that in addition to the established higher risk at 

hospitals and care homes, many private dwell-

ings may already be experiencing summertime 

overheating (ASC, 2014). Given that the Health 

and Social Care Act now places strong emphasis 

on promoting care in the community (GB, 

2012), the need for addressing overheating risk 

across the above three building typologies has 

never been more urgent. 

Hospitals and care homes 

Health authorities are aware of the threats posed 

by a warming climate, with infrastructure adap-

tation and the development of local manage-

ment plans prioritised (PHE, 2014). The concern 

with infrastructure however is that there are sig-

nificant shortfalls requiring considerable re-

sources to resolve. The CCC has highlighted 

that around 90% of hospital ward floor areas as 

being accommodated in a building typology that 

is susceptible to overheating (ASC, 2014). Nota-

bly, wards built in recent times (post-1940s) are 

at greater risk of exceeding temperatures of 26°C 

than Nightingale wards (1860-1930s) that pre-

date the National Health Service. As an incen-

tive for expediting the adaptation of these at-

risk buildings, the CCC supports the enforce-

ment of a standard for maximum temperatures, 

and regular reporting of wards that do not have 

adequate temperature controls (ASC, 2014). 

Studies have repeatedly found older people in 

care homes to be vulnerable to heat-related 

health issues (Lindley, et al., 2011). This is 

broadly attributed to the inadequate responsive-

ness of institutional procedures (Brown & 

Walker, 2008). Although the Heatwave Plan 

presents guidance on improving general respon-

siveness, consequences of extreme events have 

focused attention on emergency responses. The 

Plan for example, advocates the provision of 

‘cool rooms’ that are maintained below 26°C 

(PHE, 2014a), although the design parameters 

for achieving this remain unspecified.  

Housing  

 

Note: survey year 2007 was a comparatively cool summer.  

Data source: Beizaee et al. (2013). 

Fig. 6. UK dwellings found to overheat in summer.  
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Although southern England mortality data for 

the 2003 heatwave had demonstrated a lower 

proportion of excess deaths for persons living at 

home (Kovats, et al., 2006), a recent study had 

found 21% of a sample housing stock to be at 

risk from overheating, even in relatively cooler 

summer conditions (Beizaee, et al., 2013). The 

characterisation of housing considerably influ-

ences their overheating vulnerability. Main at-

tributes to be concerned with include thermal 

capacity and insulation of the building envelope, 

solar gain, and ventilation rates (BRE, 2014). In 

contrast to larger detached dwellings, apartment 

flats and mid-terraced housing tend to present 

increased vulnerability owing to their compact 

arrangements (Fig. 6). Reviews of the housing 

stock have revealed those built before 1920 (un-

insulated loft conversions in particular), in the 

1960s, and post 1990s to be at heightened risk 

(BRE, 2014). Flats, which have greater suscep-

tibility to overheating, are increasing as a pro-

portion of the total housing stock to constitute 

40% of new housing (25% increase since 1996), 

thereby leading to a corresponding decline in the 

number of detached housing built (ASC, 2014). 

In terms of the general arrangements of housing, 

top-floor flats and terraced house attic rooms 

tend to have higher risk of overheating. Having 

only a single aspect (particularly south-facing) 

exacerbates the issue by preventing cross-venti-

lation and being adversely affected by heat flows 

from adjoining properties. The management of 

flats also puts such arrangements at risk, as in-

adequately ventilated communal areas, and re-

duced capacity to have openable windows due 

to security concerns, causing such spaces and 

circulation routes to overheat and transfer gains 

to adjoining flats (ASC, 2014). Space standards 

of new flats also contribute to the issue. Rising 

demand for housing has enabled market forces 

to condense arrangements to a bare minimum. 

This is particularly pronounced in the United 

Kingdom, with spatial standards widely re-

garded as one of the lowest in western Europe. 

The most troubling aspect of such high-density 

arrangements is that 93% of all flats (95% of 

high-rise flats) are sited in inner cities, where the 

risk of overheating is heightened by the urban 

heat island effect (ASC, 2014).  

Influenced by energy use concerns, there is con-

siderable opposition to adopting air-conditioning 

as the principal solution for managing heat 

stress in the urban built environment. The con-

sideration of passive cooling measures such as 

building orientation, shading, thermal insula-

tion, and the use of appropriate materials in the 

design of such built environments is broadly sup-

ported as the sustainable pathway to mitigating 

heat risks (Hajat, et al., 2013). Introducing such 

measures at the design stage is not only efficient, 

but also cost effective than subsequent retrofit-

ting. However, as the benefits of these measures 

pass onto the end-occupier at the developer’s 

capital expense, has generated considerable mar-

ket hesitancy. This is particularly pronounced 

with newbuild housing, where the uncertainties 

in economically valuing occupant health and 

wellbeing betterment are substantial. The CCC 

has argued that to overcome such valuation dif-

ficulties and general market inertia, the enforce-

ment of regulatory measures such as a ‘standard 

on overheating’, as the effective approach for de-

livering heat-resilience objectives (ASC, 2014).  

Existing guidance   

The Heatwave Plan defines ‘Level 0’ as the con-

stant state where long-term planning needs to 

be considered, reviewed, and implemented. It ex-

plicitly refers to long-term spatial planning 

strategies and adaptations to be significant in 

reducing future heat-related impacts (PHE, 
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2014a). As far as city-planning requirements for 

delivering a built environment that betters com-

munity health, social and cultural wellbeing is 

concerned, England’s National Planning Policy 

Framework (NPPF) only presents a strategic 

overview (DCLG, 2012). In agreement with its 

decentralising objective, the framework supports 

Local Planning Authorities to form collaborative 

partnerships with public health organisations in 

order to understand and enhance the health of 

their local populations (DCLG, 2012). The 

NPPF as a result makes no explicit reference to 

addressing overheating or heat vulnerability in 

the built environment. Lifetime Homes (required 

by many local planning policies such as the Lon-

don Plan), and now incorporated into the Code 

for Sustainable Homes (DCLG, 2010a), also 

makes no reference to any such requirements.   

Table 3. CIBSE (2006) benchmark summer peak 

temperatures and overheating criteria. 

Building 

use  

Benchmark 

summer 

peak temp. 

°C 

Overheating 

criterion 

(% annual occupied hours 

over operative temp.) 

Offices 28 1% of 28°C 

Schools* 28 1% of 28°C 

Dwellings: 

- living areas 

 

28 

 

1% of 28°C 

- bedrooms 26 1% of 26°C 

* UK, Department for Education and Skills recommends air temper-

ature in a classroom to not exceed 32°C for more than 120 hours 

above 28°C (DfES, 2006); referred to in Building Regulations Ap-

proved Document L2 (DCLG, 2013).  

UK, Department of Health (DoH) recommends internal temperatures 

to not exceed 28°C for more than 50 hours per year in new healthcare 

buildings (ASC, 2014).  

Widely recognised guidance on benchmark sum-

mer peak temperatures and overheating criteria 

for use in the design of non-mechanically venti-

lated buildings in the United Kingdom is limited 

(CIBSE, 2006). Statutory guidance on indoor 

environments is prescribed in Building Regula-

tions, Part F (DCLG, 2010) and Part L (DCLG, 

2013). To achieve appropriate standards of in-

ternal air quality, Part F (DCLG, 2010) seeks to 

ensure that adequate ventilation is provided 

with a high degree of airtightness. To conserve 

fuel and power, Part L (DCLG, 2013) seeks to 

ensure that solar gains and gains from servicing 

works are minimised. The Regulations however 

do not specify requirements to control overheat-

ing on grounds of either protecting health or 

thermal comfort (ASC, 2014). The only associa-

tion to addressing overheating is through the 

‘standard assessment procedure’ or SAP (BRE, 

2012), which determines non-compliance with 

Part L if excessive heat gains lead to internal 

summer temperatures (monthly average) ex-

ceeding 23.5°C. The guidance to Part L suggests 

additional measures such as solar shading to 

minimise gains (ASC, 2014), which is also advo-

cated by a document (EST, 2005) referred to by 

the SAP (BRE, 2012). Both however are not 

material to Building Regulations approval.  

The CCC supports overheating risk in new hous-

ing to be best addressed by a standard intro-

duced through the Building Regulations. This 

would ensure the appropriate implementation of 

actions by developers. Although earliest notable 

recommendations to address this through the 

Regulations had been made in 1990, successive 

governments have been reluctant to give it stat-

utory force (ASC, 2014). The Zero Carbon Hub 

has instead been commissioned to increase in-

dustry awareness on residential overheating risk  

(DEFRA, 2013), while the National Adaptation 

Programme (NAP) has called for the SAP to be 

reviewed (by the DECC) to address overheating 

concerns (DEFRA, 2013). Designers in the 

meantime are guided by CIBSE benchmarks and 

criteria (Table 3), and Departmental guidance 

for schools and hospitals (CIBSE, 2006).   
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Estimated change in the mean number of heatwave exposure events 

for people over 65 per year and per km2, resulting from climate 

change under RCP 8.5 emissions scenario, and SSP2 demography 

scenario that projects a large increase in the global population of 

older people. Source: The Royal Society (2014). 

Fig. 7. Heatwave exposure for older people in 2090.  

Conclusion  

Excess heat adversely affects the health and 

wellbeing of building occupants. Many discussed 

groups of occupants may encounter increased 

vulnerability, with older people identified as re-

quiring greater attention. Given the demo-

graphic and climate context of current and fu-

ture heat-related risks (see Fig. 7), authorities 

such as the Committee on Climate Change have 

recognised the necessity for urgent action, and 

for it to be manifested in the design and imple-

mentation of built environments. Given the ur-

gency of the problem, the CCC recommends the 

introduction of an enforceable building standard 

as the way in which such concerns could be 

properly accounted (ASC, 2014). The formula-

tion of such a standard however would need to 

address the following challenges:  

++++ The ageing structure of the population means 

that the workplace demographic will soon in-

clude members of an older age group with in-

creased vulnerability to heat, amongst many 

other risks. Projects such as ‘Lifelong Health and 

Wellbeing’ (LLHW) and its ‘extending working 

lives awards’, have considered the challenges 

that people in employment at an older age en-

counter. The assessment of any overheating 

standard would need to take account of these 

findings, and consider whether other building ty-

pologies would also need to be included to create 

environments that support lifelong health and 

wellbeing in the workplace. The CCC and its 

consideration of hospitals, care homes, and hous-

ing would therefore need to extend to include 

uses such as offices, retail etc., where older em-

ployees will be increasingly likely occupants. 

++++ The objective to deliver ‘zero carbon’ homes 

has encouraged improvements to the energy ef-

ficiency of the housing stock. This in turn will 

result in the mitigation of most climate change 

impacts and a potential reduction in cold-related 

mortality. However, all such measures of in-

creasing insulation and airtightness of housing 

may also be inadvertently increasing the risk of 

summer overheating. To reconcile these oppos-

ing interests, managing overheating risk and im-

proving energy efficiency standards would need 

to be considered as an integrated exercise.  

 

Source: The Royal Society (2014). 

Fig. 8. Options to reduce heatwave impact. 
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++++ Regional variations in climate and the differ-

ent adaptations of their populations make it dif-

ficult to present a nationally applicable thresh-

old for indoor overheating. There is however 

favourable understanding of outdoor tempera-

ture thresholds for mortality, with recent studies 

beginning to associate them with indoor opera-

tive temperatures (e.g., Mavrogianni, et al., 

2012). The outcomes of these (and further) stud-

ies will be of significance to the development of 

a regionally responsive overheating standard. 

++++ Demolition and replacement rates of housing 

in the United Kingdom are considerably lower 

than Europe, with the building stock considered 

to be one of the oldest in the world (DEFRA, 

2012). Retrofitting and adaptation are therefore 

essential for addressing climate change chal-

lenges, including overheating. As there is no 

standard for addressing overheating at present, 

all current additions to the stock may also re-

quire retrofitting in the future. The CCC esti-

mates that at the current replacement rate, 80% 

of the dwelling stock that will be in use in 2050, 

as already built (ASC, 2014). This represents a 

considerable adaptation challenge that is likely 

to require a long-term strategic approach to 

funding and implementation.  

++++ Urban inhabitants are at heightened risk from 

excess heat due to the heat island effect. Many 

studies have focused on how built environment 

design, materiality, morphology (Theeuwes, et 

al., 2014), and green (Doick, et al., 2014) and 

blue-space distribution (Volker, et al., 2013) 

contributes to keeping communities cool. Alt-

hough the Royal Society assigns lower priority 

(see Fig. 8) to urban planning considerations 

(The Royal Society, 2014), the CCC argues for 

planning policy to be integrated to a framework 

of measures required for improving resilience to 

overheating (ASC, 2014). The NPPF in force 

however is insufficiently detailed to influence 

such issues directly and has left such matters to 

be addressed at a local level. While some local 

interests have means to address such urban scale 

resilience challenges, most Local Authorities are 

likely to struggle. It is therefore necessary to as-

sist local interests by providing ‘tools’ to map 

risks, develop new strategies, and periodically 

review implemented actions. 
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